Dirac Eigenvalues for Generic Metrics on Three-manifolds
نویسنده
چکیده
We show that for generic Riemannian metrics on a closed spin manifold of dimension three the Dirac operator has only simple eigenvalues.
منابع مشابه
Dirac eigenspinors for generic metrics
We consider a Riemannian spin manifold (M, g) with a fixed spin structure. The zero sets of solutions of generalized Dirac equations on M play an important role in some questions arising in conformal spin geometry and in mathematical physics. In this setting the mass endomorphism has been defined as the constant term in an expansion of Green’s function for the Dirac operator. One is interested ...
متن کاملUpper Bounds for the First Eigenvalue of the Dirac Operator on Surfaces. *
In this paper we will prove new extrinsic upper bounds for the eigenvalues of the Dirac operator on an isometrically immersed surface M2 →֒ R3 as well as intrinsic bounds for 2-dimensional compact manifolds of genus zero and genus one. Moreover, we compare the different estimates of the eigenvalue of the Dirac operator for special families of metrics. Subj. Class.: Differential geometry. 1991 MS...
متن کاملUpper Bounds for the Rst Eigenvalue of the Dirac Operator on Surfaces
In this paper we will prove new extrinsic upper bounds for the eigenvalues of the Dirac operator on an isometrically immersed surface M 2 , ! R 3 as well as intrinsic bounds for 2-dimensional compact manifolds of genus zero and genus one. Moreover, we compare the diierent estimates of the eigenvalue of the Dirac operator for special families of metrics.
متن کاملEigenvalues of the Dirac Operator on Manifolds with Boundary
Under standard local boundary conditions or certain global APS boundary conditions, we get lower bounds for the eigenvalues of the Dirac operator on compact spin manifolds with boundary. For the local boundary conditions, limiting cases are characterized by the existence of real Killing spinors and the minimality of the boundary.
متن کاملClifford–Finsler Algebroids and Nonholonomic Einstein–Dirac Structures
We propose a new framework for constructing geometric and physical models on nonholonomic manifolds provided both with Clifford – Lie algebroid symmetry and nonlinear connection structure. Explicit parametrizations of generic off–diagonal metrics and linear and nonlinear connections define different types of Finsler, Lagrange and/or Riemann–Cartan spaces. A generalization to spinor fields and D...
متن کامل